01_what_is_devops 2

02_a_brief_history_of_devops

03_the_goals_of_devops 11
04_a_story_of_devops_vs_traditional_silos 16
05_build_automation 26
06_continuous_integration 30
07_continuous_delivery 34
08_infrastructure_as_code 39
09_configuration_management 43
10_orchestration 47
11_0_monitoring 51
11_1_microservices 55
12_introduction_to_devops_tools 60
13_tools_for_build_automation_and_ci 63
14 _tools_for_config_management 69
15_tools_for_virtualization_and_containerization 75
16_tools_for_monitoring 78
17_tools_for_orchestration 83
18_devops_and_the_cloud 89
19_devops_and_gcp 96
20_devops_and_azure 104
21_devops_and_aws 109

22_next_steps 116

Defining DevOps

DevOps = Dev (Development) + Ops (Operations)
Different people define DevOps in a variety of ways.

This definition from Wikipedia is a good starting point:

“DevOps is a software engineering culture and practice that aims at unifying software
development (Dev) and software operation (Ops)...

DevOps aims at shorter development cycles, increased deployment frequency, more dependable
releases, in close alignment with business objectives.”

- Wikipedia (Feb. 2018)

@ Linux Academy ‘ o Cloud Assessments

DevOpsls...

* DevOpsis first a Culture of collaboration between developers and operations people
* Thisculture has givenrise to a set of Practices

* DevOpsis agrassroots movement, by practitioners, for practitioners

@ Linux Academy ‘ o Cloud Assessments

DevOpsIsNOT...

* DevOpsis NOT tools, but Tools are essential to success in DevOps
* DevOpsis NOT astandard
* DevOpsisNOT a product

* DevOpsisNOT ajob title

@ Linux Academy ‘ c Cloud Assessments

This Course Will Cover...

* DevOps Culture - The culture of collaboration between Dev and Ops
* DevOps Practices - The practices which support the goals of DevOps culture
* DevOps Tools - The tools that help implement DevOps practices

* DevOps and the Cloud - The close relationship between DevOps and the cloud

@ Linux Academy ‘ o Cloud Assessments

Agile Software Development

* DevOps grew out of the Agile software development movement

* Agile seeks to develop software in small, frequent cycles in order to deliver functionality to
customers quickly and quickly respond to changing business goals

* DevOps and Agile often go hand-in-hand

@ Linux Academy ‘ o Cloud Assessments

The Timeline of DevOps
2007: Agile software development was gaining popularity, but it was also suffering from a growing divide
between development and operations.

2007: Patrick Debois, an engineer with experience doing both dev and ops, was doing testingon a
project and became frustrated by the huge divide between dev and ops.

2008: Patrick Debois and Andrew Shafer met at the Agile2008 Conference in Toronto, Canada. They
began to start conversations and seek others interested in bridging the divide between dev and ops.

June 23, 2009: John Allspaw and Paul Hammond gave a talk at Velocity Conference: “10+ Deploys Per
Day: Dev and Ops Cooperation at Flickr.” Patrick was watching via livestream. People began discussing it
via twitter.

October 30-312009: Patrick hosted the first DevOpsDays in Ghent, Belgium; a conference for both devs
and ops engineers. The conversation continued on Twitter: #devops.

DevOps grew into an organic, grassroots movement all over the world and spawned many tools to
support the practices valued by DevOps.

@ Linux Academy ‘ c Cloud Assessments

Today

The DevOps movement has not stopped growing since 2009, and is no longer a small, niche movement.
It has since:

* Become mainstream.
* Spawned a large variety of tools.

* Completely changed the IT industry forever.

@ Linux Academy ‘ o Cloud Assessments

DevOps Culture

DevOps culture is about collaboration between Dev and Ops.

Under the traditional separation between Dev and Ops, Dev and Ops have different and opposing goals.

Development Operations

@ Linux Academy ‘ c Cloud Assessments

DevOps Culture

DevOps culture is about collaboration between Dev and Ops.

With DevOps, Dev and Ops work together and share the same goals.

Speed and Stability

Development and Operations

@ Linux Academy ‘ c Cloud Assessments

The Goals of DevOps Culture

With DevOps:
* DevandOps are playing on the same team

* Devand Ops share the same goals

These goals include things like:
* Fast time-to-market (TTM)
* Few production failures

* Immediate recovery from failures

@ Linux Academy ‘ o Cloud Assessments

The Goals of DevOps Culture

DevOpsis about Dev and Ops working together.

In a DevOps culture, devs care about stability as well as speed, and ops care about speed as well as
stability.

The traditional roles of developers and operational engineers can even become blurred under DevOps.

Instead of “throwing code over the wall,” dev and ops work together to create and use tools and
processes that support both speed and stability.

DevOps recognizes that dev and ops are more powerful when they are together!

@ Linux Academy ‘ c Cloud Assessments

The Story of Some Code: Traditional Silos

* Devswritecode
* “throwit over the wall” to QA
* Codebounces back and forth between Dev and QA as QA discovers problems and Devs fix them

* Finally, itisready for production

@
"

Developers

U
T

Operations

@ Linux Academy ‘ c Cloud Assessments

The Story of Some Code: Traditional Silos

* QA/Dev “throws the code over the wall” to Operations

* Ohno! There's a problem. Ops throws it back over the wall to Dev
* Eachgroup’sdomainis a “black box” to the other groups

* “Oursystems arefine; it's your code!”

* “But the code works on my machine!”

O
@
fg®

Developers

U
T

Operations

@ Linux Academy ‘ c Cloud Assessments

Traditional Silos - What Went Wrong?

» Devand Ops are black boxes to each other, which leads to finger pointing:
Because Ops is a black box, Devs don’t really trust them
And Ops doesn’t really trust Dev

* Devand Ops have different priorities, which pits them against each other:
Ops views Devs as breaking stability
Devs see ops as an obstacle to delivering their code

* Evenifthey WANT to work together:

Dev is measured by delivering features, which means deploying changes

Ops is measured by uptime, but changes are bad for stability

@ Linux Academy ‘ c Cloud Assessments

Downsides of Traditional Silos

“Black boxes” lead to finger pointing

Lengthy process means slow time-to-market

* Lackof automation means things like builds and deployments are inconsistent

It takes a long time to identify and fix problems

@ Linux Academy ‘ o Cloud Assessments

The Story of Some Code: DevOps

* Devswritecode
* Code commit triggers automated build, integration, and tests

* QAcanget their hands on it almost immediately

* Onceitisready, kick off an automated deployment to production

0 . 50 8¢
Fah ~ Tl -+ FgW

Developers QA Operations

Build p» Integrate p» Test P Deploy

@ Linux Academy ‘ c Cloud Assessments

The Story of Some Code: DevOps

* Sinceeverythingis automated, it is much easier to deploy while keeping things stable

* Deployments can occur much more frequently, getting features into the hands of customers faster

0 . 50 8¢
Fah ~ Tl -+ FgW

Developers QA Operations

Build p» Integrate p» Test P Deploy

@ Linux Academy ‘ c Cloud Assessments

The Story of Some Code: DevOps

* Ohno! The latest deployment broke something in production!
* Fortunately, automated monitoring notified the team immediately

* Theteam does arollback by deploying the previous working version, fixing the problem quickly

* Anhour later, the dev team was able to deploy a fixed version of the new code

.0 N 0.0 N 0.0
Fah ~ Tl -+ FgW

Developers QA Operations

Build p» Integrate p» Test P Deploy <> Monitor

@ Linux Academy ‘ c Cloud Assessments

DevOps - What Went Right?

* Devand Ops worked together to build a robust way of changing code quickly and reliably:

Both Dev and Ops worked together to prioritize both speed of delivery and stability

* Automation led to consistency:
Building, testing, and deploying happened the same way every time

Building, testing, and deploying happened much more quickly and more often

* Good monitoring, plus the swift deployment process, ensured problems could be fixed even before
users noticed them:

Dev and Ops worked together up front to build good processes

Even though a code change caused a problem, users experienced little or no downtime

@ Linux Academy ‘ c Cloud Assessments

Why do DevOps?

* Happier teams:

Tech employees tend to be happier doing DevOps than under traditional silos
More time innovating and less time putting out fires
Devs don’t feel like they have to fight to get their work out there

Operations people don’t have to fight Dev to keep the system stable

* Happier customers:

DevOps lets you give customers the features they want quickly

And you don’t have to sacrifice stability to doit!

@ Linux Academy ‘ c Cloud Assessments

What is Build Automation?

Build automation: automation of the process of preparing code for deployment to a live
environment

Depending on what languages are used, code needs to be compiled, linted, minified, transformed,
unit tested, etc.

Build automation means taking these steps and doing them in a consistent, automated way using a
script or tool

The tools of build automation often differ depending on what programming languages and
frameworks are used, but they have one thing in common: automation!

@ Linux Academy ‘ c Cloud Assessments

What does build automation look like?

* Usually, build automation looks like running a command-line tool that builds code using
configuration files and/or scripts that are treated as part of the source code

* Build automationisindependent of an IDE
* Evenifyoucan build within the IDE, it should be able to work the same way outside of the IDE

* Asmuch as possible, build automation should be agnostic of the configuration of the machine that it
is built on

* Your code should be able to build on someone else’s machine the same way it builds on yours

@ Linux Academy ‘ c Cloud Assessments

Why do build automation?

Build automation is fast - Automation handles tasks that would otherwise need to be done manually.

Build automation is consistent — The build happens the same way every time, removing problems and
confusion that can happen with manual builds.

Build automation is repeatable - The build can be done multiple times with the same result. Any version
of the source code can always be transformed into deployable code in a consistent way.

Build automation is portable - The build can be done the same way on any machine. Anyone on the team
can build on their machine, as well as on a shared build server. Building code doesn’t depend on specific
people or machines.

Build automation is more reliable - There will be fewer problems caused by bad builds.

@ Linux Academy ‘ c Cloud Assessments

What is Continuous Integration?

Continuous Integration (CI): the practice of frequently merging code changes done by developers

Traditionally, developers would work separately, perhaps for weeks at a time, and then merge all of
their work together at the end in one large effort

Continuous integration means merging constantly throughout the day, usually with the execution of
automated tests to detect any problems caused by the merge

Merging all the time could be a lot of work, so to avoid that it should be automated!

@ Linux Academy ‘ o Cloud Assessments

What does Continuous Integration look like?

Continuous integration is usually done with the help of a Cl server.

* Whenadeveloper commits a code change, the Cl server sees the change and automatically
performs a build, also executing automated tests.

* This occurs multiple times a day.

* Ifthereis any problem with the build, the Cl server immediately and automatically notifies the
developers.

* Ifanyone commits code that “breaks the build” they are responsible for fixing the problem or rolling
back their changes immediately so that other developers can continue working.

@ Linux Academy ‘ o Cloud Assessments

Why do Continuous Integration?

Early detection of certain types of bugs - If code doesn’t compile or an automated test fails, the
developers are notified and can fix it immediately. The sooner these bugs are detected, the easier they
are to fix!

Eliminate the scramble to integrate just before a big release - The code is constantly merged, so there is
no need to do a big merge at the end.

Makes frequent releases possible - Code is always in a state that can be deployed to production.

Makes continuous testing possible - Since the code can always be run, QA testers can get their hands on
it all throughout the development process, not just at the end.

Encourages good coding practices - Frequent commits encourages simple, modular code.

@ Linux Academy ‘ o Cloud Assessments

Continuous Delivery and Continuous

Deployment

1

What is Continuous Delivery?

e Continuous Delivery (CD): the practice of continuously maintaining code in a deployable state

* Regardless of whether or not the decision is made to deploy, the code is always in a state that is able
to be deployed.

* Some use the terms continuous delivery and continuous deployment interchangeably, or simply use
the abbreviation CD

@ Linux Academy ‘ o Cloud Assessments

What is Continuous Deployment?

Continuous Deployment: the practice of frequently deploying small code changes to production

* Continuousdelivery is keeping the code in a deployable state. Continuous deployment is actually
doing the deployment frequently

* Some companies that do continuous deployment deploy to production multiple times a day

* Thereis no standard for how often you should deploy, but in general the more often you deploy the
better!

* With continuous deployment, deployments to production are routine and commonplace. They are
not a big, scary event

@ Linux Academy ‘ o Cloud Assessments

What does Continuous Delivery and Continuous Deployment look like?

* Each version of the code goes through a series of stages such as automated build, automated testing, and
manual acceptance testing. The result of this process is an artifact or package that is able to be deployed.

* When the decision is made to deploy, the deployment is automated. What the automated deployment looks
like depends on the architecture, but no matter what the architecture is, the deployment is automated.

* Ifadeployment causes a problem, it is quickly and reliably rolled back using an automated process
(hopefully before a customer even notices the problem!)

* Rollbacks aren’t a big deal because the developers can redeploy a fixed version as soon as they have one
available.

* Noone grips their desk in fear during a deployment, even if the deployment does cause a problem.

@ Linux Academy ‘ c Cloud Assessments

Why do Continuous Delivery and Continuous Deployment?

Faster time-to-market - Get features into the hands of customers more quickly rather than waiting for a lengthy
deployment process that doesn’t happen often.

Fewer problems caused by the deployment process - Since the deployment process is frequently used, any
problems with the process are more easily discovered.

Lower risk - The more changes are deployed at once, the higher the risk. Frequent deployments of only a few
changes are less risky.

Reliable rollbacks - Robust automation means rollbacks are a reliable way to ensure stability for customers, and
rollbacks don’t hurt developers because they can roll forward with a fix as soon as they have one.

Fearless deployments — Robust automation plus the ability to rollback quickly means deployments are
commonplace, everyday events rather than big, scary events.

@ Linux Academy ‘ o Cloud Assessments

Whatis Infrastructure as Code?

* Infrastructure as Code (IaC): manage and provision infrastructure through code and automation.

* Withinfrastructure as code, instead of doing things manually, you use automation and code to
create and change:
Servers
Instances
Environments
Containers

Other infrastructure

@ Linux Academy ‘ c Cloud Assessments

What does infrastructure as code look like?

* Without infrastructure as code you might:

sshintoahost

Issue a series of commands to perform the change

e Withinfrastructure as code:

Change some code or configuration files that can be used with an automation tool to perform changes
Commit them to source control

Use an automation tool to enact the changes defined in the code and/or configuration files

* WithlaC, provisioning new resources and changing existing resources are both done through
automation

@ Linux Academy ‘ o Cloud Assessments

Why do infrastructure as code?

Consistency in creation and management of resources — The same automation will run the same way every time.

Reusability - Code can be used to make the same change consistently across multiple hosts and can be used
again in the future.

Scalability - Need a new instance? You can have one configured exactly the same way as the existing instances in
minutes (or seconds).

Self-documenting — With l1aC, changes to infrastructure document themselves to a degree. The way a server is
configured can be viewed in source control, rather than being a matter of who logged in to the server and did
something.

Simplify the complexity - Complex infrastructures can be stood up quickly once they are defined as code. A
group of several interdependent servers can be provisioned on demand.

@ Linux Academy ‘ c Cloud Assessments

What is Configuration Management?

Configuration Management: maintaining and changing the state of pieces of infrastructurein a
consistent, maintainable, and stable way

Changes always need to happen - configuration management is about doing them in a maintainable
way

Configuration management allows you to minimize configuration drift - the small changes that
accumulate over time and make systems different from one another and harder to manage

Infrastructure as Code is very beneficial for configuration management

@ Linux Academy ‘ o Cloud Assessments

What does configuration management look like?

Hereis an Example

* You need to upgrade a software package on a bunch of servers:
Without good configuration management, you log into each server and perform the upgrade. However, this
can lead to a lot of problems. Perhaps one server was missed due to poor documentation, or perhaps

something doesn’t work while the versions are temporarily mismatched between servers, causing a lot of
downtime while you do the upgrade.

With good configuration management, you define the new version of the software package in a
configuration file or tool and automatically roll out the change to all of the servers.

* Configuration management is about managing your configuration somewhere outside of the servers
themselves

@ Linux Academy ‘ o Cloud Assessments

Why do configuration management?

Save time - It takes less time to change the configuration.

Insight — With good configuration management, you can know about the state of all pieces of a large and
complex infrastructure.

Maintainability - A more maintainable infrastructure is easier to change in a stable way.

Less configuration drift - It is easier to keep a standard configuration across a multitude of hosts.

@ Linux Academy ‘ c Cloud Assessments

What is Orchestration?

* Orchestration: automation that supports processes and workflows, such as provisioning resources

* With orchestration, managing a complex infrastructure is less like being a builder and more like
conducting an orchestra

* Instead of going out and creating a piece of infrastructure, the conductor simply signals what needs
to be done and the orchestra performsiit:

The conductor does not need to control every detail

The musicians (automation) are able to perform their piece with only a little bit of guidance

@ Linux Academy ‘ o Cloud Assessments

What does Orchestration look like?

* Hereisanexample:

- Acustomer requests more resources for a web service that is about to see a heavy increase in usage due to
a planned marketing effort

Instead of manually standing up new nodes, operations engineers use an orchestration tool to request five
more nodes to support the service

« Afew minutes later, the tool has five new nodes are up and running

* A much cooler example:

- Amonitoring tool detects an increased load on the service
« Anorchestration tool responds to this by spinning up additional resources to handle the load

- Whenthe load decreases again, the tool spins the additional resources back down, freeing them up to be
used by something else

- Allof this happens while the engineer is getting coffee

@ Linux Academy ‘ o Cloud Assessments

Why do orchestration?

Scalability - Resources can be quickly increased or decreased to meet changing needs.

Stability - Automation tools can automatically respond to fix problems before users see them.
Save time - Certain tasks and workflows can be automated, freeing up engineers’ time.
Self-service - Orchestration can be used to offer resources to customers in a self-service fashion.

Granular insight into resource usage — Orchestration tools give greater insight into how many resources
are being used by what software, services, or customers.

@ Linux Academy ‘ o Cloud Assessments

What is Monitoring?

* Monitoring: The collection and presentation of data about the performance and stability of services
and infrastructure

* Monitoring tools collect data over things such as:

Usage of memory

cpu

diski/o

Other resources over time
Application logs

Network traffic

° etc.
* Thecollected datais presented in various forms, such as charts and graphs, or in the form of real-
time notifications about problems

@ Linux Academy ‘ c Cloud Assessments

What does Monitoring look like™?

e Real-time notifications:

« Performance on the website is beginning to slow down
« A monitoring tool detects that response times are growing

- Anadministrator isimmediately notified and is able to intervene before downtime occurs

* Postmortem analysis:

- Something went wrong in production last night
- It'sworking now, but we don’t know what caused it
« Luckily, monitoring tools collected a lot of data during the outage

- With that data, developers and operations engineers are able to determine the root cause (a poorly
performing SQL query) and fix it

@ Linux Academy ‘ c Cloud Assessments

Why do Monitoring?

Fast recovery - The sooner a problem is detected, the sooner it can be fixed. You want to know bout a
problem before your customer does!

Better root cause analysis - The more data you have, the easier it is to determine the root cause of a
problem.

Visibility across teams - Good monitoring tools give useful data to both developers and operations
people about the performance of code in production.

Automated response - Monitoring data can be used alongside orchestration to provide automated
responses to events, such as automated recovery from failures.

@ Linux Academy ‘ o Cloud Assessments

What are Microservices?

* Microservices: A microservice architecture breaks an application up into a collection of small,
loosely-coupled services

* Traditionally, apps used a monolithic architecture. In a monolithic architecture, all features and
services are part of one large application

* Microservices are small: each microservice implements only a small piece of an application’s overall
functionality

* Microservices are loosely coupled: Different microservices interact with each other using stable and
well-defined APIs. This means that they are independent of one another

@ Linux Academy ‘ o Cloud Assessments

Microservices vs Monolith

Authentication

Customer Info

Inventory

Payments

Microservices

@ Linux Academy ‘ c Cloud Assessments

What do microservices look like?

* There are many different ways to structure and organize a microservice architecture

* Forexample, a pet shop application might have:

A petinventory service

A customer details service

An authentication service

A pet adoption request service

A payment processing service

* Eachof theseisits own codebase and a separate running process (or processes). They can all be
built, deployed, and scaled separately

@ Linux Academy ‘ c Cloud Assessments

Why use Microservices?

* Modularity - Microservices encourage modularity. In monolithic apps, individual pieces become
tightly coupled, and complexity grows. Eventually, it’s very hard to change anything without breaking
something

* Technological flexibility - You don’t need to use the same languages and technologies for every part
of the app. You can use the best tool for each job

* Optimized scalability - You can scale individual parts of the app based upon resource usage and
load. With a monolith, you have to scale up the entire application, even if only one aspect of the
service actually needs to be scaled

* Microservices aren’t always the best choice. For smaller, simpler apps a monolith might be easier to
manage

@ Linux Academy ‘ o Cloud Assessments

The Role of Tools in DevOps

* DevOpsisNOT aset of tools

* But how can we achieve high speed of delivery while maintaining stability? TOOLS!

The DevOps community has created a wide range of powerful tools

Part of doing DevOps is identifying the tools you need and learning how to use them

@ Linux Academy ‘ o Cloud Assessments

The Periodic Table of DevOps Tools

* Wecan't cover every tool in this course, so we'll just briefly introduce you to some of the most
popular ones

* Thekind folks at Xebia Labs have created a neat way to explore some of the popular tools associated
with DevOps: The Period Table of DevOps Tools

* Source: https://xebialabs.com/periodic-table-of-devops-tools/

e A PDF Version can be found in the course downloads

@ Linux Academy ‘ c Cloud Assessments

Tools for Build Automation and Continuous
INntegration

Build Automation Tools

* Build automation - Automated processing of code in preparation for deployment

* What tools you use for build automation usually depend on programming languages and frameworks

A few examples:

* Java-ant, maven, gradle

* Javascript - npm, grunt, gulp

* Make - widely used in Unix-based systems

* Packer - build machine images and containers

@ Linux Academy ‘ o Cloud Assessments

Continuous Integration Tools

e Continuous Integration - Continuously merging code into a single branch or mainline
* Continuous Integration tools usually consist of a server that integrates with source control

* Whensource code is changed, the server responds by executing an automated build

@ Linux Academy ‘ c Cloud Assessments

Continuous Integration Tools

Jenkins:
* Opensource - fork of Hudson
* Widelyused

e Javaservlet-based

@ Linux Academy ‘ c Cloud Assessments

Continuous Integration Tools

TravisCl:
* Opensource
* Builtaround Github integration

 Executes buildsin clean VMs

@ Linux Academy ‘ c Cloud Assessments

Continuous Integration Tools

Bamboo:
* Enterprise product by Atlassian

* Out-of-the-box integration with other Atlassian products like JIRA and Confluence

@ Linux Academy ‘ c Cloud Assessments

Configuration Management Tools

* Configuration Management - Managing and changing the state of pieces of infrastructureina
consistent and maintainable way

* Configuration management tools are a great way to implement infrastructure as code

@ Linux Academy ‘ o Cloud Assessments

Configuration Management Tools

Ansible:

* Opensource

* Declarative configuration

* YAML configuration files

* No control server needed - but Ansible tower is available

* Noagents needed, just python and ssh

@ Linux Academy ‘ c Cloud Assessments

Configuration Management Tools

Puppet:

* Declarative configuration
* Manage state through a Ul
* Custom modules use Puppet DSL

* Pushes changes to clients using a control server and agents installed on clients

@ Linux Academy ‘ c Cloud Assessments

Configuration Management Tools

Chef:

* Procedural configuration
* Agent/server

* Uses Chef DSL

@ Linux Academy ‘ c Cloud Assessments

Configuration Management Tools

Salt:

* Declarative configuration
* Agent (minions) /server (master) - but can support agentless
* UsesYAML

* Support for event-driven automation

@ Linux Academy ‘ c Cloud Assessments

Virtualization Tools

* Virtualization - Managing resources by creating virtual rather than physical machines
* Hypervisor - Runs on bare metal and manages virtual machines (VMs)

* Examples:

VMWare ESX and ESXi
Microsoft Hyper-V

Citrix XenServer

@ Linux Academy ‘ o Cloud Assessments

Containerization

e Containers - Lightweight, isolated packages containing everything needed to run a piece of software

* Require fewer resources than VMs - VMs contain an entire OS plus virtual versions of all the
hardware

* Containers have the bare minimum needed to run the software
* Docker - Docker is currently the leading container technology

* Containers are still relatively new but very useful for DevOps!

@ Linux Academy ‘ o Cloud Assessments

Monitoring Tools

* Monitoring - Collecting and presenting data about the state and performance of applications

* Therearedifferent types of monitoring:

« Infrastructure monitoring — focuses on things related to infrastructure
Examples: CPU, ram

- Application Performance Monitoring (APM) - focuses on performance and stability of individual parts of an
application

Examples: response times, logs

@ Linux Academy ‘ c Cloud Assessments

Infrastructure Monitoring Tools

* SenSu

Designed as a modern replacement for Nagios
Server/agent

Agents push data to an AMQP broker

e NewRelic

SaaS + agent

Wide variety of metrics (also does APM)

@ Linux Academy ‘ c Cloud Assessments

Application Performance Monitoring Tools

* AppDynamics - collects data points about applications and presents it in a centralized dashboard.

Code-level diagnostics — able to identify performance issues at the code level.

Server/agent

* NewRelic also does APM

@ Linux Academy ‘ c Cloud Assessments

Aggregation and Analytics Tools

* Aggregation and Analytics are about collecting monitoring data and doing something with it

* Most monitoring tools have some aggregation and analytics features

* Elastic Stack - pump data in and quickly create views to aggregate data and easily detect and
diagnose problems

@ Linux Academy ‘ c Cloud Assessments

Orchestration Tools

* Orchestration - automation that supports processes and workflows, such as provisioning resources.

* Letsyoudo thingslike:

Scale up and scale down applications on request
Auto scale applications based on usage

Create self-healing systems by spinning down unhealthy nodes and replacing them with new ones

@ Linux Academy ‘ o Cloud Assessments

Orchestration Tools

Docker Swarm:
e Docker-native

e Orchestration for Docker containers

@ Linux Academy ‘ c Cloud Assessments

Orchestration Tools

Kubernetes:
* Opensource
* Orchestration server

* Manage containerized apps across multiple hosts

@ Linux Academy ‘ c Cloud Assessments

Orchestration Tools

Zookeeper:
* Opensource - Apache foundation
* Canworkalongside Kubernetes

* Offersacentralized service registry that integrates with orchestration features

@ Linux Academy ‘ c Cloud Assessments

Orchestration Tools

Terraform:

Combines orchestration and infrastructure-as-code

Works well with other tools, like Ansible

Works well with AWS

Integrates with Kubernetes

@ Linux Academy ‘ c Cloud Assessments

DevOps and the Cloud

DevOps and the Cloud are not the same thing:

DevOps - a culture of collaboration between Dev and Ops

The Cloud - remote servers on the internet that offer services in place of locally-hosted solutions. “The
cloud is someone else’s computer”

DevOps culture and practices are very useful in the world of the cloud

DevOps and the Cloud developed alongside one another, and many cloud services are built on
DevOps practices

They can also be a tool for DevOps. Many cloud services offer features that support DevOps
practices

@ Linux Academy ‘ o Cloud Assessments

Traditional Non-Cloud Stack

* Atraditional stackis aregular, self-hosted datacenter
* Inatraditional stack, you are responsible for every layer of the architecture

* You provide all of the infrastructure necessary to run your apps

@ Linux Academy ‘ c Cloud Assessments

Applications
Data
Runtime
Middleware
0/S
Virtualization
Servers

Storage

Networking

Infrastructure as a Service

With Infrastructure as a Service (laaS), someone else provides the low-level infrastructure

Applications

* Thecloud service provider gives you a bare OS
Data

Runtime
* Youareresponsible for all installation and configuration above the OS level. i Lenare
e
0/s
* Examples: virtualization
- Amazon ec2instances servers
q q Storage
- Microsoft Azure VMs and containers J
. Networking
+ Google Compute Engine

@ Linux Academy ‘ c Cloud Assessments

Platform as a Service

* With Platform as a Service (PaaS), everything below the Application and Data layers is abstracted

0 . 0 Applicati
¢ Thecloudservice provider gives you a way to deploy an app and use databases
Data

Runtime
y [naging th n
You are only responsible for managing the app and data e adlerare
0/S
’ Examples: Virtualization
AWS Elastic Beanstalk Servers
st
Heroku orage
i Networking
Google App Engine

@ Linux Academy ‘ c Cloud Assessments

Software as a Service

* With Software as a Service (SaaS), everything is managed

. Applicati
« Thecloud service provider gives you an application ready for use slimsrl
Data
)))) Runtime
* Youareonly responsible for using the application X
Middleware
0/s
* Examples: virtualization
G-mail Servers
. . Storage
Microsoft Office 365
Networking

@ Linux Academy ‘ c Cloud Assessments

Serverless

Serverless is also known as Function as a Service (FaaS)

Functions

* Serverless is different from the traditional application architecture Applications
Data
* Everythingis abstracted. You deploy small, single-purpose functions e
Middleware
* You pay for the compute resources used by your functions 0’8
Virtualization
Servers
* Examples:
Storage
+ AWSLambda (AWS Serverless Platform) Networking

-« Azure functions

« Google Cloud Functions

@ Linux Academy ‘ c Cloud Assessments

Google Cloud Platform DevOps Features

Google App Engine:

Paas - Deploy your code, don’t worry about the rest

Built-in support for microservices

Out-of-the box autoscaling

Certain configurations can be considered serverless

@ Linux Academy ‘ c Cloud Assessments

Google Cloud Platform DevOps Features

Google Compute Engine:

laaS - Deploy and orchestrate clusters of VMs on Google’s architecture

Built-in orchestration

Works with app engine

Can be managed with other tools like Ansible, Salt, Puppet, and Chef

@ Linux Academy ‘ o Cloud Assessments

Google Cloud Platform DevOps Features

Google Cloud Functions:
* Google’s FaaS/Serverless solution

* Quickly and easily create and deploy FaaS functions

@ Linux Academy ‘ c Cloud Assessments

Google Cloud Platform DevOps Features

Google Cloud SDK:
* AnSDK (software development kit) for interacting with GCP APIs

* Makes it easy to build your own tools and automations that interact with GCP

@ Linux Academy ‘ c Cloud Assessments

Google Cloud Platform DevOps Features

Stackdriver:
* GCP’s monitoring solution
* Monitoring, logging, and diagnostics for your GCP services

 Alsoworkswith AWS

@ Linux Academy ‘ c Cloud Assessments

Google Cloud Platform DevOps Features

Cloud Deployment Manager:
* Declarative configuration for your GCP stack
* laaC and automated deployment

* YAML-based

@ Linux Academy ‘ c Cloud Assessments

Google Cloud Platform DevOps Features

Google Kubernetes Engine:
* Orchestration on GCP with Kubernetes

* Do continuous integration with Jenkins on Kubernetes Engine

@ Linux Academy ‘ c Cloud Assessments

Microsoft Azure DevOps Features

Continuous Integration, Delivery, and Deployment:

* Visual Studio Team Services - source control and Cl

* Jenkins - Cl for Java apps

* Continuous Deployment Triggers — automated deployment triggers integrated with Cli

@ Linux Academy ‘ c Cloud Assessments

Microsoft Azure DevOps Features

Orchestration:

* Azure Container Registry - repository of container images

e Azure Container Service - Kubernetes orchestration

 Azure Web Apps - Cloud hosting for web apps integrated with DevOps pipeline

@ Linux Academy ‘ c Cloud Assessments

Microsoft Azure DevOps Features

Monitoring:

* Azure Application Insights - APM, diagnhostics, and analytics. Supports machine learning!

@ Linux Academy ‘ c Cloud Assessments

Microsoft Azure DevOps Features

FaaS /Serverless:

e Azure Functions - autoscaling, serverless functions in Azure

@ Linux Academy ‘ c Cloud Assessments

Amazon Web Services DevOps Features

Amazon EC2 (Elastic Compute Cloud):

laaS

Easily scalable

Full control over your cloud infrastructure

Integrates with tons of tools, both AWS and 3™-party

@ Linux Academy ‘ c Cloud Assessments

Amazon Web Services DevOps Features

AWS Elastic Beanstalk:
* PaaS
* Out-of-the-box load balancing and autoscaling

* Canstillaccess underlying AWS resources with full control

@ Linux Academy ‘ c Cloud Assessments

Amazon Web Services DevOps Features

Continuous Integration, Delivery, and Deployment:

AWS CodeBuild - continuous integration
* AWS CodeDeploy - continuous deployment
* AWS CodePipeline - full code pipeline from build to deploy

« AWS CodeStar - integrates all parts of the process with project management tools and JIRA issue
tracking

@ Linux Academy ‘ c Cloud Assessments

Amazon Web Services DevOps Features

Infrastructure as Code:
* CloudFormation - Stack templating engine, YAML or JSON-based

* OpsWorks - l1aC with Chef

@ Linux Academy ‘ c Cloud Assessments

Amazon Web Services DevOps Features

Serverless / FaaS:

e AWS Lambda -run serverless functions on AWS

@ Linux Academy ‘ c Cloud Assessments

Amazon Web Services DevOps Features

Monitoring:

 Amazon Cloudwatch - track metrics and logs, set alarms, and automate responses to monitoring
data

@ Linux Academy ‘ c Cloud Assessments

What we talked about

In this course, we talked about:

* WhatDevOpsis

* DevOpsculture

* DevOps Concepts and Practices
* DevOps Tools

* DevOps and the Cloud

@ Linux Academy ‘ c Cloud Assessments

Next Steps

Tool Quick Starts:

Docker (+Docker Certified Associate)
Ansible

Git

Jenkins

Puppet

Serverless Concepts

@ Linux Academy ‘ c Cloud Assessments

Next Steps

Cloud Platforms:
* Google Cloud Platform
e Azure

e Amazon Web Services

@ Linux Academy ‘ c Cloud Assessments

Next Steps

Go do DevOps!

@ Linux Academy ‘ c Cloud Assessments

