
01_what_is_devops   2

02_a_brief_history_of_devops   7

03_the_goals_of_devops   11

04_a_story_of_devops_vs_traditional_silos   16

05_build_automation   26

06_continuous_integration   30

07_continuous_delivery   34

08_infrastructure_as_code   39

09_configuration_management   43

10_orchestration   47

11_0_monitoring   51

11_1_microservices   55

12_introduction_to_devops_tools   60

13_tools_for_build_automation_and_ci   63

14_tools_for_config_management   69

15_tools_for_virtualization_and_containerization   75

16_tools_for_monitoring   78

17_tools_for_orchestration   83

18_devops_and_the_cloud   89

19_devops_and_gcp   96

20_devops_and_azure   104

21_devops_and_aws   109

22_next_steps   116



DevOps Essentials

DevOps Essentials

What is DevOps?



DevOps Essentials

Defining DevOps

DevOps = Dev (Development) + Ops (Operations)

Different people define DevOps in a variety of ways.

This definition from Wikipedia is a good starting point:

“DevOps is a software engineering culture and practice that aims at unifying software 
development (Dev) and software operation (Ops)...

DevOps aims at shorter development cycles, increased deployment frequency, more dependable 
releases, in close alignment with business objectives.”

- Wikipedia (Feb. 2018)



DevOps Essentials

DevOps Is...

• DevOps is first a Culture of collaboration between developers and operations people

• This culture has given rise to a set of Practices

• DevOps is a grassroots movement, by practitioners, for practitioners



DevOps Essentials

DevOps Is NOT...

• DevOps is NOT tools, but Tools are essential to success in DevOps

• DevOps is NOT a standard

• DevOps is NOT a product

• DevOps is NOT a job title



DevOps Essentials

This Course Will Cover…

• DevOps Culture – The culture of collaboration between Dev and Ops

• DevOps Practices – The practices which support the goals of DevOps culture

• DevOps Tools – The tools that help implement DevOps practices

• DevOps and the Cloud – The close relationship between DevOps and the cloud



DevOps Essentials

DevOps Essentials

A Brief History of DevOps



DevOps Essentials

Agile Software Development

• DevOps grew out of the Agile software development movement
• Agile seeks to develop software in small, frequent cycles in order to deliver functionality to 

customers quickly and quickly respond to changing business goals
• DevOps and Agile often go hand-in-hand



DevOps Essentials

The Timeline of DevOps

2007: Agile software development was gaining popularity, but it was also suffering from a growing divide 
between development and operations.

2007: Patrick Debois, an engineer with experience doing both dev and ops, was doing testing on a 
project and became frustrated by the huge divide between dev and ops.

2008: Patrick Debois and Andrew Shafer met at the Agile2008 Conference in Toronto, Canada. They 
began to start conversations and seek others interested in bridging the divide between dev and ops.

June 23, 2009: John Allspaw and Paul Hammond gave a talk at Velocity Conference: “10+ Deploys Per 
Day: Dev and Ops Cooperation at Flickr.” Patrick was watching via livestream. People began discussing it 
via twitter.

October 30-31 2009: Patrick hosted the first DevOpsDays in Ghent, Belgium; a conference for both devs
and ops engineers. The conversation continued on Twitter: #devops.

DevOps grew into an organic, grassroots movement all over the world and spawned many tools to 
support the practices valued by DevOps.



DevOps Essentials

Today

The DevOps movement has not stopped growing since 2009, and is no longer a small, niche movement. 
It has since:

• Become mainstream.

• Spawned a large variety of tools.

• Completely changed the IT industry forever.



DevOps Essentials

DevOps Essentials

The Goals of DevOps



DevOps Essentials

DevOps Culture

DevOps culture is about collaboration between Dev and Ops.

Under the traditional separation between Dev and Ops, Dev and Ops have different and opposing goals.



DevOps Essentials

DevOps Culture

DevOps culture is about collaboration between Dev and Ops.

With DevOps, Dev and Ops work together and share the same goals.



DevOps Essentials

The Goals of DevOps Culture

With DevOps:
• Dev and Ops are playing on the same team
• Dev and Ops share the same goals

These goals include things like:
• Fast time-to-market (TTM)
• Few production failures
• Immediate recovery from failures



DevOps Essentials

The Goals of DevOps Culture

DevOps is about Dev and Ops working together.

In a DevOps culture, devs care about stability as well as speed, and ops care about speed as well as 
stability.

The traditional roles of developers and operational engineers can even become blurred under DevOps.

Instead of “throwing code over the wall,” dev and ops work together to create and use tools and 
processes that support both speed and stability.

DevOps recognizes that dev and ops are more powerful when they are together!



DevOps Essentials

DevOps Essentials

A Story of DevOps vs. Traditional Silos



DevOps Essentials

The Story of Some Code: Traditional Silos

• Devs write code
• “throw it over the wall” to QA
• Code bounces back and forth between Dev and QA as QA discovers problems and Devs fix them
• Finally, it is ready for production



DevOps Essentials

The Story of Some Code: Traditional Silos

• QA/Dev “throws the code over the wall” to Operations
• Oh no! There’s a problem. Ops throws it back over the wall to Dev
• Each group’s domain is a “black box” to the other groups
• “Our systems are fine; it’s your code!”
• “But the code works on my machine!”



DevOps Essentials

Traditional Silos – What Went Wrong?

• Dev and Ops are black boxes to each other, which leads to finger pointing:

• Because Ops is a black box, Devs don’t really trust them

• And Ops doesn’t really trust Dev

• Dev and Ops have different priorities, which pits them against each other:

• Ops views Devs as breaking stability

• Devs see ops as an obstacle to delivering their code

• Even if they WANT to work together:

• Dev is measured by delivering features, which means deploying changes

• Ops is measured by uptime, but changes are bad for stability



DevOps Essentials

Downsides of Traditional Silos

• “Black boxes” lead to finger pointing

• Lengthy process means slow time-to-market

• Lack of automation means things like builds and deployments are inconsistent

• It takes a long time to identify and fix problems



DevOps Essentials

The Story of Some Code: DevOps

• Devs write code
• Code commit triggers automated build, integration, and tests
• QA can get their hands on it almost immediately
• Once it is ready, kick off an automated deployment to production



DevOps Essentials

The Story of Some Code: DevOps

• Since everything is automated, it is much easier to deploy while keeping things stable

• Deployments can occur much more frequently, getting features into the hands of customers faster



DevOps Essentials

The Story of Some Code: DevOps

• Oh no! The latest deployment broke something in production!
• Fortunately, automated monitoring notified the team immediately
• The team does a rollback by deploying the previous working version, fixing the problem quickly
• An hour later, the dev team was able to deploy a fixed version of the new code



DevOps Essentials

DevOps – What Went Right?

• Dev and Ops worked together to build a robust way of changing code quickly and reliably:

• Both Dev and Ops worked together to prioritize both speed of delivery and stability

• Automation led to consistency:

• Building, testing, and deploying happened the same way every time

• Building, testing, and deploying happened much more quickly and more often

• Good monitoring, plus the swift deployment process, ensured problems could be fixed even before 
users noticed them:

• Dev and Ops worked together up front to build good processes

• Even though a code change caused a problem, users experienced little or no downtime



DevOps Essentials

Why do DevOps?

• Happier teams:

• Tech employees tend to be happier doing DevOps than under traditional silos

• More time innovating and less time putting out fires

• Devs don’t feel like they have to fight to get their work out there

• Operations people don’t have to fight Dev to keep the system stable

• Happier customers:

• DevOps lets you give customers the features they want quickly

• And you don’t have to sacrifice stability to do it!



DevOps Essentials

DevOps Essentials

Build Automation



DevOps Essentials

What is Build Automation?

• Build automation: automation of the process of preparing code for deployment to a live 
environment

• Depending on what languages are used, code needs to be compiled, linted, minified, transformed, 
unit tested, etc.

• Build automation means taking these steps and doing them in a consistent, automated way using a 
script or tool

• The tools of build automation often differ depending on what programming languages and 
frameworks are used, but they have one thing in common: automation!



DevOps Essentials

What does build automation look like?

• Usually, build automation looks like running a command-line tool that builds code using 
configuration files and/or scripts that are treated as part of the source code

• Build automation is independent of an IDE

• Even if you can build within the IDE, it should be able to work the same way outside of the IDE

• As much as possible, build automation should be agnostic of the configuration of the machine that it 
is built on

• Your code should be able to build on someone else’s machine the same way it builds on yours



DevOps Essentials

Why do build automation?

Build automation is fast - Automation handles tasks that would otherwise need to be done manually.

Build automation is consistent – The build happens the same way every time, removing problems and 
confusion that can happen with manual builds.

Build automation is repeatable – The build can be done multiple times with the same result. Any version 
of the source code can always be transformed into deployable code in a consistent way.

Build automation is portable – The build can be done the same way on any machine. Anyone on the team 
can build on their machine, as well as on a shared build server. Building code doesn’t depend on specific 
people or machines.

Build automation is more reliable – There will be fewer problems caused by bad builds.



DevOps Essentials

DevOps Essentials

Continuous Integration



DevOps Essentials

What is Continuous Integration?

• Continuous Integration (CI): the practice of frequently merging code changes done by developers

• Traditionally, developers would work separately, perhaps for weeks at a time, and then merge all of 
their work together at the end in one large effort

• Continuous integration means merging constantly throughout the day, usually with the execution of 
automated tests to detect any problems caused by the merge

• Merging all the time could be a lot of work, so to avoid that it should be automated!



DevOps Essentials

What does Continuous Integration look like?

• Continuous integration is usually done with the help of a CI server.

• When a developer commits a code change, the CI server sees the change and automatically 
performs a build, also executing automated tests.

• This occurs multiple times a day.

• If there is any problem with the build, the CI server immediately and automatically notifies the 
developers.

• If anyone commits code that “breaks the build” they are responsible for fixing the problem or rolling 
back their changes immediately so that other developers can continue working.



DevOps Essentials

Why do Continuous Integration?

Early detection of certain types of bugs – If code doesn’t compile or an automated test fails, the 
developers are notified and can fix it immediately. The sooner these bugs are detected, the easier they 
are to fix!

Eliminate the scramble to integrate just before a big release – The code is constantly merged, so there is 
no need to do a big merge at the end.

Makes frequent releases possible - Code is always in a state that can be deployed to production.

Makes continuous testing possible – Since the code can always be run, QA testers can get their hands on 
it all throughout the development process, not just at the end.

Encourages good coding practices – Frequent commits encourages simple, modular code.



DevOps Essentials

DevOps Essentials
Continuous Delivery and Continuous 

Deployment



DevOps Essentials

What is Continuous Delivery?

• Continuous Delivery (CD): the practice of continuously maintaining code in a deployable state

• Regardless of whether or not the decision is made to deploy, the code is always in a state that is able 
to be deployed.

• Some use the terms continuous delivery and continuous deployment interchangeably, or simply use 
the abbreviation CD



DevOps Essentials

What is Continuous Deployment?

• Continuous Deployment: the practice of frequently deploying small code changes to production

• Continuous delivery is keeping the code in a deployable state. Continuous deployment is actually 
doing the deployment frequently

• Some companies that do continuous deployment deploy to production multiple times a day

• There is no standard for how often you should deploy, but in general the more often you deploy the 
better!

• With continuous deployment, deployments to production are routine and commonplace. They are 
not a big, scary event



DevOps Essentials

What does Continuous Delivery and Continuous Deployment look like?

• Each version of the code goes through a series of stages such as automated build, automated testing, and 
manual acceptance testing. The result of this process is an artifact or package that is able to be deployed.

• When the decision is made to deploy, the deployment is automated. What the automated deployment looks 
like depends on the architecture, but no matter what the architecture is, the deployment is automated.

• If a deployment causes a problem, it is quickly and reliably rolled back using an automated process 
(hopefully before a customer even notices the problem!)

• Rollbacks aren’t a big deal because the developers can redeploy a fixed version as soon as they have one 
available.

• No one grips their desk in fear during a deployment, even if the deployment does cause a problem.



DevOps Essentials

Why do Continuous Delivery and Continuous Deployment?
Faster time-to-market – Get features into the hands of customers more quickly rather than waiting for a lengthy 
deployment process that doesn’t happen often.

Fewer problems caused by the deployment process – Since the deployment process is frequently used, any 
problems with the process are more easily discovered.

Lower risk – The more changes are deployed at once, the higher the risk. Frequent deployments of only a few 
changes are less risky.

Reliable rollbacks – Robust automation means rollbacks are a reliable way to ensure stability for customers, and 
rollbacks don’t hurt developers because they can roll forward with a fix as soon as they have one.

Fearless deployments – Robust automation plus the ability to rollback quickly means deployments are 
commonplace, everyday events rather than big, scary events.



DevOps Essentials

DevOps Essentials

Infrastructure as Code



DevOps Essentials

What is Infrastructure as Code?

• Infrastructure as Code (IaC): manage and provision infrastructure through code and automation.

• With infrastructure as code, instead of doing things manually, you use automation and code to 
create and change:

• Servers

• Instances 

• Environments

• Containers

• Other infrastructure



DevOps Essentials

What does infrastructure as code look like?

• Without infrastructure as code you might:

• ssh into a host

• Issue a series of commands to perform the change

• With infrastructure as code:

• Change some code or configuration files that can be used with an automation tool to perform changes 

• Commit them to source control

• Use an automation tool to enact the changes defined in the code and/or configuration files

• With IaC, provisioning new resources and changing existing resources are both done through 
automation



DevOps Essentials

Why do infrastructure as code?

Consistency in creation and management of resources – The same automation will run the same way every time.

Reusability – Code can be used to make the same change consistently across multiple hosts and can be used 
again in the future.

Scalability – Need a new instance? You can have one configured exactly the same way as the existing instances in 
minutes (or seconds).

Self-documenting – With IaC, changes to infrastructure document themselves to a degree. The way a server is 
configured can be viewed in source control, rather than being a matter of who logged in to the server and did 
something.

Simplify the complexity – Complex infrastructures can be stood up quickly once they are defined as code. A 
group of several interdependent servers can be provisioned on demand.



DevOps Essentials

DevOps Essentials

Configuration Management



DevOps Essentials

What is Configuration Management?

• Configuration Management: maintaining and changing the state of pieces of infrastructure in a 
consistent, maintainable, and stable way

• Changes always need to happen – configuration management is about doing them in a maintainable 
way

• Configuration management allows you to minimize configuration drift – the small changes that 
accumulate over time and make systems different from one another and harder to manage

• Infrastructure as Code is very beneficial for configuration management



DevOps Essentials

What does configuration management look like?

Here is an Example
• You need to upgrade a software package on a bunch of servers:

• Without good configuration management, you log into each server and perform the upgrade. However, this 
can lead to a lot of problems. Perhaps one server was missed due to poor documentation, or perhaps 
something doesn’t work while the versions are temporarily mismatched between servers, causing a lot of 
downtime while you do the upgrade.

• With good configuration management, you define the new version of the software package in a 
configuration file or tool and automatically roll out the change to all of the servers.

• Configuration management is about managing your configuration somewhere outside of the servers 
themselves



DevOps Essentials

Why do configuration management?

Save time – It takes less time to change the configuration.

Insight – With good configuration management, you can know about the state of all pieces of a large and 
complex infrastructure.

Maintainability - A more maintainable infrastructure is easier to change in a stable way.

Less configuration drift – It is easier to keep a standard configuration across a multitude of hosts.



DevOps Essentials

DevOps Essentials

Orchestration



DevOps Essentials

What is Orchestration?

• Orchestration: automation that supports processes and workflows, such as provisioning resources

• With orchestration, managing a complex infrastructure is less like being a builder and more like 
conducting an orchestra

• Instead of going out and creating a piece of infrastructure, the conductor simply signals what needs 
to be done and the orchestra performs it:

• The conductor does not need to control every detail

• The musicians (automation) are able to perform their piece with only a little bit of guidance



DevOps Essentials

What does Orchestration look like?

• Here is an example:

• A customer requests more resources for a web service that is about to see a heavy increase in usage due to 
a planned marketing effort

• Instead of manually standing up new nodes, operations engineers use an orchestration tool to request five 
more nodes to support the service

• A few minutes later, the tool has five new nodes are up and running

• A much cooler example:

• A monitoring tool detects an increased load on the service

• An orchestration tool responds to this by spinning up additional resources to handle the load

• When the load decreases again, the tool spins the additional resources back down, freeing them up to be 
used by something else

• All of this happens while the engineer is getting coffee



DevOps Essentials

Why do orchestration?

Scalability – Resources can be quickly increased or decreased to meet changing needs.

Stability – Automation tools can automatically respond to fix problems before users see them.

Save time – Certain tasks and workflows can be automated, freeing up engineers’ time.

Self-service – Orchestration can be used to offer resources to customers in a self-service fashion.

Granular insight into resource usage – Orchestration tools give greater insight into how many resources 
are being used by what software, services, or customers.



DevOps Essentials

DevOps Essentials

Monitoring



DevOps Essentials

What is Monitoring?

• Monitoring: The collection and presentation of data about the performance and stability of services 
and infrastructure

• Monitoring tools collect data over things such as:

• Usage of memory

• cpu

• disk i/o

• Other resources over time 

• Application logs

• Network traffic

• etc.
• The collected data is presented in various forms, such as charts and graphs, or in the form of real-

time notifications about problems



DevOps Essentials

What does Monitoring look like?

• Real-time notifications:

• Performance on the website is beginning to slow down

• A monitoring tool detects that response times are growing

• An administrator is immediately notified and is able to intervene before downtime occurs

• Postmortem analysis:

• Something went wrong in production last night

• It’s working now, but we don’t know what caused it

• Luckily, monitoring tools collected a lot of data during the outage

• With that data, developers and operations engineers are able to determine the root cause (a poorly 
performing SQL query) and fix it



DevOps Essentials

Why do Monitoring?

Fast recovery – The sooner a problem is detected, the sooner it can be fixed. You want to know bout a 
problem before your customer does!

Better root cause analysis – The more data you have, the easier it is to determine the root cause of a 
problem.

Visibility across teams – Good monitoring tools give useful data to both developers and operations 
people about the performance of code in production.

Automated response – Monitoring data can be used alongside orchestration to provide automated 
responses to events, such as automated recovery from failures.



DevOps Essentials

DevOps Essentials

Microservices



DevOps Essentials

What are Microservices?

• Microservices: A microservice architecture breaks an application up into a collection of small, 
loosely-coupled services

• Traditionally, apps used a monolithic architecture. In a monolithic architecture, all features and 
services are part of one large application

• Microservices are small: each microservice implements only a small piece of an application’s overall 
functionality

• Microservices are loosely coupled: Different microservices interact with each other using stable and 
well-defined APIs. This means that they are independent of one another



DevOps Essentials

Microservices vs Monolith

Monolith

Microservices



DevOps Essentials

What do microservices look like?

• There are many different ways to structure and organize a microservice architecture

• For example, a pet shop application might have:

• A pet inventory service

• A customer details service

• An authentication service

• A pet adoption request service

• A payment processing service

• Each of these is its own codebase and a separate running process (or processes). They can all be 
built, deployed, and scaled separately



DevOps Essentials

Why use Microservices?

• Modularity – Microservices encourage modularity. In monolithic apps, individual pieces become 
tightly coupled, and complexity grows. Eventually, it’s very hard to change anything without breaking 
something

• Technological flexibility – You don’t need to use the same languages and technologies for every part 
of the app. You can use the best tool for each job

• Optimized scalability – You can scale individual parts of the app based upon resource usage and 
load. With a monolith, you have to scale up the entire application, even if only one aspect of the 
service actually needs to be scaled

• Microservices aren’t always the best choice. For smaller, simpler apps a monolith might be easier to 
manage



DevOps Essentials

DevOps Essentials

Introduction to DevOps Tools



DevOps Essentials

The Role of Tools in DevOps

• DevOps is NOT a set of tools

• But how can we achieve high speed of delivery while maintaining stability? TOOLS!

• The DevOps community has created a wide range of powerful tools

• Part of doing DevOps is identifying the tools you need and learning how to use them



DevOps Essentials

The Periodic Table of DevOps Tools

• We can’t cover every tool in this course, so we’ll just briefly introduce you to some of the most 
popular ones

• The kind folks at Xebia Labs have created a neat way to explore some of the popular tools associated 
with DevOps: The Period Table of DevOps Tools

• Source: https://xebialabs.com/periodic-table-of-devops-tools/

• A PDF Version can be found in the course downloads



DevOps Essentials

DevOps Essentials
Tools for Build Automation and Continuous 

Integration



DevOps Essentials

Build Automation Tools

• Build automation – Automated processing of code in preparation for deployment

• What tools you use for build automation usually depend on programming languages and frameworks

A few examples:
• Java – ant, maven, gradle
• Javascript – npm, grunt, gulp
• Make – widely used in Unix-based systems
• Packer – build machine images and containers



DevOps Essentials

Continuous Integration Tools

• Continuous Integration – Continuously merging code into a single branch or mainline

• Continuous Integration tools usually consist of a server that integrates with source control

• When source code is changed, the server responds by executing an automated build



DevOps Essentials

Continuous Integration Tools

Jenkins:

• Open source – fork of Hudson

• Widely used

• Java servlet-based



DevOps Essentials

Continuous Integration Tools

TravisCI:

• Open source

• Built around Github integration

• Executes builds in clean VMs



DevOps Essentials

Continuous Integration Tools

Bamboo:

• Enterprise product by Atlassian

• Out-of-the-box integration with other Atlassian products like JIRA and Confluence



DevOps Essentials

DevOps Essentials

Tools for Configuration Management



DevOps Essentials

Configuration Management Tools

• Configuration Management – Managing and changing the state of pieces of infrastructure in a 
consistent and maintainable way

• Configuration management tools are a great way to implement infrastructure as code



DevOps Essentials

Configuration Management Tools

Ansible:
• Open source

• Declarative configuration

• YAML configuration files

• No control server needed – but Ansible tower is available

• No agents needed, just python and ssh



DevOps Essentials

Configuration Management Tools

Puppet:
• Declarative configuration

• Manage state through a UI

• Custom modules use Puppet DSL

• Pushes changes to clients using a control server and agents installed on clients



DevOps Essentials

Configuration Management Tools

Chef:
• Procedural configuration

• Agent/server

• Uses Chef DSL



DevOps Essentials

Configuration Management Tools

Salt:
• Declarative configuration

• Agent (minions) / server (master) – but can support agentless

• Uses YAML

• Support for event-driven automation



DevOps Essentials

DevOps Essentials

Tools for Virtualization and Containerization



DevOps Essentials

Virtualization Tools

• Virtualization – Managing resources by creating virtual rather than physical machines

• Hypervisor – Runs on bare metal and manages virtual machines (VMs)

• Examples: 

• VMWare ESX and ESXi

• Microsoft Hyper-V

• Citrix XenServer



DevOps Essentials

Containerization

• Containers – Lightweight, isolated packages containing everything needed to run a piece of software

• Require fewer resources than VMs – VMs contain an entire OS plus virtual versions of all the 
hardware

• Containers have the bare minimum needed to run the software

• Docker – Docker is currently the leading container technology

• Containers are still relatively new but very useful for DevOps!



DevOps Essentials

DevOps Essentials

Tools for Monitoring



DevOps Essentials

Monitoring Tools

• Monitoring – Collecting and presenting data about the state and performance of applications

• There are different types of monitoring:

• Infrastructure monitoring – focuses on things related to infrastructure 

• Examples: CPU, ram

• Application Performance Monitoring (APM) – focuses on performance and stability of individual parts of an 
application

• Examples: response times, logs



DevOps Essentials

Infrastructure Monitoring Tools

• SenSu

• Designed as a modern replacement for Nagios

• Server/agent

• Agents push data to an AMQP broker

• NewRelic

• SaaS + agent

• Wide variety of metrics (also does APM)



DevOps Essentials

Application Performance Monitoring Tools

• AppDynamics – collects data points about applications and presents it in a centralized dashboard.

• Code-level diagnostics – able to identify performance issues at the code level.

• Server/agent

• NewRelic also does APM



DevOps Essentials

Aggregation and Analytics Tools

• Aggregation and Analytics are about collecting monitoring data and doing something with it

• Most monitoring tools have some aggregation and analytics features

• Elastic Stack – pump data in and quickly create views to aggregate data and easily detect and 
diagnose problems



DevOps Essentials

DevOps Essentials

Tools for Orchestration



DevOps Essentials

Orchestration Tools

• Orchestration – automation that supports processes and workflows, such as provisioning resources.

• Lets you do things like:

• Scale up and scale down applications on request

• Auto scale applications based on usage

• Create self-healing systems by spinning down unhealthy nodes and replacing them with new ones



DevOps Essentials

Orchestration Tools

Docker Swarm:

• Docker-native

• Orchestration for Docker containers



DevOps Essentials

Orchestration Tools

Kubernetes:

• Open source

• Orchestration server

• Manage containerized apps across multiple hosts



DevOps Essentials

Orchestration Tools

Zookeeper:

• Open source – Apache foundation

• Can work alongside Kubernetes

• Offers a centralized service registry that integrates with orchestration features



DevOps Essentials

Orchestration Tools

Terraform:

• Combines orchestration and infrastructure-as-code

• Works well with other tools, like Ansible

• Works well with AWS

• Integrates with Kubernetes



DevOps Essentials

DevOps Essentials

DevOps and the Cloud



DevOps Essentials

DevOps and the Cloud

• DevOps and the Cloud are not the same thing:

• DevOps – a culture of collaboration between Dev and Ops

• The Cloud – remote servers on the internet that offer services in place of locally-hosted solutions. “The 
cloud is someone else’s computer”

• DevOps culture and practices are very useful in the world of the cloud

• DevOps and the Cloud developed alongside one another, and many cloud services are built on 
DevOps practices

• They can also be a tool for DevOps. Many cloud services offer features that support DevOps 
practices



DevOps Essentials

Traditional Non-Cloud Stack

• A traditional stack is a regular, self-hosted datacenter

• In a traditional stack, you are responsible for every layer of the architecture

• You provide all of the infrastructure necessary to run your apps



DevOps Essentials

Infrastructure as a Service

• With Infrastructure as a Service (IaaS), someone else provides the low-level infrastructure

• The cloud service provider gives you a bare OS

• You are responsible for all installation and configuration above the OS level.

• Examples:

• Amazon ec2 instances

• Microsoft Azure VMs and containers

• Google Compute Engine



DevOps Essentials

Platform as a Service

• With Platform as a Service (PaaS), everything below the Application and Data layers is abstracted

• The cloud service provider gives you a way to deploy an app and use databases

• You are only responsible for managing the app  and data

• Examples:

• AWS Elastic Beanstalk

• Heroku

• Google App Engine



DevOps Essentials

Software as a Service

• With Software as a Service (SaaS), everything is managed

• The cloud service provider gives you an application ready for use

• You are only responsible for using the application

• Examples:

• G-mail

• Microsoft Office 365



DevOps Essentials

Serverless

• Serverless is also known as Function as a Service (FaaS)

• Serverless is different from the traditional application architecture

• Everything is abstracted. You deploy small, single-purpose functions

• You pay for the compute resources used by your functions

• Examples:

• AWS Lambda (AWS Serverless Platform)
• Azure functions
• Google Cloud Functions



DevOps Essentials

DevOps Essentials

DevOps and Google Cloud Platform



DevOps Essentials

Google Cloud Platform DevOps Features

Google App Engine:

• PaaS - Deploy your code, don’t worry about the rest

• Built-in support for microservices

• Out-of-the box autoscaling

• Certain configurations can be considered serverless



DevOps Essentials

Google Cloud Platform DevOps Features

Google Compute Engine:

• IaaS – Deploy and orchestrate clusters of VMs on Google’s architecture

• Built-in orchestration

• Works with app engine

• Can be managed with other tools like Ansible, Salt, Puppet, and Chef



DevOps Essentials

Google Cloud Platform DevOps Features

Google Cloud Functions:

• Google’s FaaS/Serverless solution

• Quickly and easily create and deploy FaaS functions



DevOps Essentials

Google Cloud Platform DevOps Features

Google Cloud SDK:

• An SDK (software development kit) for interacting with GCP APIs

• Makes it easy to build your own tools and automations that interact with GCP



DevOps Essentials

Google Cloud Platform DevOps Features

Stackdriver:

• GCP’s monitoring solution

• Monitoring, logging, and diagnostics for your GCP services

• Also works with AWS



DevOps Essentials

Google Cloud Platform DevOps Features

Cloud Deployment Manager:

• Declarative configuration for your GCP stack

• IaaC and automated deployment

• YAML-based



DevOps Essentials

Google Cloud Platform DevOps Features

Google Kubernetes Engine:

• Orchestration on GCP with Kubernetes

• Do continuous integration with Jenkins on Kubernetes Engine



DevOps Essentials

DevOps Essentials

DevOps and Microsoft Azure



DevOps Essentials

Microsoft Azure DevOps Features

Continuous Integration, Delivery, and Deployment:

• Visual Studio Team Services – source control and CI

• Jenkins – CI for Java apps

• Continuous Deployment Triggers – automated deployment triggers integrated with CI



DevOps Essentials

Microsoft Azure DevOps Features

Orchestration:

• Azure Container Registry – repository of container images

• Azure Container Service – Kubernetes orchestration

• Azure Web Apps – Cloud hosting for web apps integrated with DevOps pipeline



DevOps Essentials

Microsoft Azure DevOps Features

Monitoring:

• Azure Application Insights – APM, diagnostics, and analytics. Supports machine learning!



DevOps Essentials

Microsoft Azure DevOps Features

FaaS / Serverless:

• Azure Functions – autoscaling, serverless functions in Azure



DevOps Essentials

DevOps Essentials

DevOps and Amazon Web Services



DevOps Essentials

Amazon Web Services DevOps Features

Amazon EC2 (Elastic Compute Cloud):

• IaaS

• Easily scalable

• Full control over your cloud infrastructure

• Integrates with tons of tools, both AWS and 3rd-party



DevOps Essentials

Amazon Web Services DevOps Features

AWS Elastic Beanstalk:

• PaaS

• Out-of-the-box load balancing and autoscaling

• Can still access underlying AWS resources with full control



DevOps Essentials

Amazon Web Services DevOps Features

Continuous Integration, Delivery, and Deployment:

• AWS CodeBuild – continuous integration

• AWS CodeDeploy – continuous deployment

• AWS CodePipeline – full code pipeline from build to deploy

• AWS CodeStar – integrates all parts of the process with project management tools and JIRA issue 
tracking



DevOps Essentials

Amazon Web Services DevOps Features

Infrastructure as Code:

• CloudFormation – Stack templating engine, YAML or JSON-based

• OpsWorks – IaC with Chef



DevOps Essentials

Amazon Web Services DevOps Features

Serverless / FaaS:

• AWS Lambda – run serverless functions on AWS



DevOps Essentials

Amazon Web Services DevOps Features

Monitoring:

• Amazon Cloudwatch – track metrics and logs, set alarms, and automate responses to monitoring 
data



DevOps Essentials

DevOps Essentials

Next Steps



DevOps Essentials

What we talked about

In this course, we talked about:

• What DevOps is

• DevOps culture

• DevOps Concepts and Practices

• DevOps Tools

• DevOps and the Cloud



DevOps Essentials

Next Steps

Tool Quick Starts:

• Docker (+Docker Certified Associate)
• Ansible
• Git
• Jenkins
• Puppet
• Serverless Concepts



DevOps Essentials

Next Steps

Cloud Platforms:

• Google Cloud Platform

• Azure

• Amazon Web Services



DevOps Essentials

Next Steps

Go do DevOps!


